User Modeling for Contextual Suggestion
نویسندگان
چکیده
This paper describes our work on the Contextual Suggestion Track of the Twenty-Third Text REtrieval Conference (TREC 2014). The key to our approach is user interest modeling. By building explicit models of user interests and information needs, we are able to make suggestions relevant to the user. We extended our Reinforcement and Aging Modeling Algorithm (RAMA) to create user interest models using the rated examples in a user profile as explicit relevance feedback. Two models, one for specific interests and the other for general interests, are built for each user profile. To ensure that the recommendations are contextually appropriate, we have also built a simple model to capture contextual relevance of a recommendation. Candidate suggestions are retrieved from the Yelp® website using its application programming interface. For each candidate, we calculate three component scores based on the specific interest model, the general interest model, and the context model, respectively. Final scoring and ranking are computed as a weighted linear combination of the component scores. We hypothesize that the relative weighting of the components may affect the performance of our system. To test the hypothesis, we have submitted two runs with different weighting schemes. In particular, RUN1 has a specific interest priority whereas RAMARUN2 has a general interest priority. TREC evaluation reveals that both runs performed significantly better than the median of all submitted runs (i.e., the Track Median) on three performance metrics. In addition, RAMARUN2 has a slight performance edge over RUN1. The effectiveness of our approach is evidenced by the TREC evaluation result that RAMARUN2 and RUN1 ranked #2 and #6 out of the 31 runs submitted by the 17 participating teams from around the world.
منابع مشابه
Neural Endorsement Based Contextual Suggestion
This paper presents the University of Amsterdam’s participation in the TREC 2016 Contextual Suggestion Track. In this research, we have studied a personallized neural document language modeling and a neural category preference modeling for contextual suggestion using available endorsements in TREC 2016 contextual suggestion track phase 2 requests. Specifically, our main aim is to answer the que...
متن کاملPRIS at TREC 2012 Contextual Suggestion Track
The system to Contextual Suggestion Track at TREC2012 includes information crawling and preprocessing, context filtering, user modeling, similarity computing and ranking, description generating. Some third party tool kits are used, such as URLPARSE. TF-IDF (term frequency–inverse document frequency) and cosine similarity is also used for building user models and computed similarities between us...
متن کاملYork University at TREC 2013: Contextual Suggestion Track
This paper presents our participation in the Contextual Suggestion Track of TREC 2013. The goal of this track is to investigate search techniques for complex information needs that are highly dependent on context and user interests. To achieve this goal, we propose a semantic user profile modeling for personalized place recommendation. For the semantic user profile model construction, we constr...
متن کاملEvaluating Contextual Suggestion
As its primary evaluation measure, the TREC 2012 Contextual Suggestion Track used precision@5. Unfortunately, this measure is not ideally suited to the task. The task in this track is different from IR systems where precision@5, and similar measures, could more readily be used. Track participants returned travel suggestions that included brief descriptions, where the availability of these descr...
متن کاملVenue Suggestion Using Social-Centric Scores
User modeling is a very important task for making relevant suggestions of venues to the users. These suggestions are often based on matching the venues’ features with the users’ preferences, which can be collected from previously visited locations. In this paper, we present a set of relevance scores for making personalized suggestions of points of interest. These scores model each user by focus...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014